skip to main content


Search for: All records

Creators/Authors contains: "Paul, Rajib"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Real‐time trends from surveillance data are important to assess and develop preparedness for influenza outbreaks. The overwhelming testing demand and limited capacity of testing laboratories for viral positivity render daily confirmed case data inaccurate and delay its availability in preparedness. Using Bayesian dynamic downscaling models, we obtained posterior estimates for daily influenza incidences from weekly estimates of the Centers for Disease Control and Prevention and daily reported constitutional and respiratory complaints during emergency department (ED) visits obtained from the state health departments. Our model provides one‐day and seven‐day lead forecasts along with 95 prediction intervals. Our hybrid Markov Chain Monte Carlo and Kalman filter algorithms facilitate faster computation and enable us to update our estimates as new data become available. Our method is tested and validated using the State of Michigan data over the years 2009‐2013. Reported constitutional and respiratory complaints at the EDs showed strong correlations of 0.81 and 0.68 respectively, with influenza rates. In general, our forecast model can be adapted to track an outbreak with only one respiratory virus as a causative agent.

     
    more » « less
  2. Abstract

    Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make months ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national and state-level projections. Here, we find SMH performance varied widely as a function of both scenario validity and model calibration. We show scenarios remained close to reality for 22 weeks on average before the arrival of unanticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of participating models that preserved variation between models (using the linear opinion pool method) was consistently more reliable than any single model in periods of valid scenario assumptions, while projection interval coverage was near target levels. SMH projections were used to guide pandemic response, illustrating the value of collaborative hubs for longer-term scenario projections.

     
    more » « less
  3. Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020. 
    more » « less
    Free, publicly-accessible full text available May 2, 2024
  4. In Spring 2021, the highly transmissible SARS-CoV-2 Delta variant began to cause increases in cases, hospitalizations, and deaths in parts of the United States. At the time, with slowed vaccination uptake, this novel variant was expected to increase the risk of pandemic resurgence in the US in summer and fall 2021. As part of the COVID-19 Scenario Modeling Hub, an ensemble of nine mechanistic models produced 6-month scenario projections for July–December 2021 for the United States. These projections estimated substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant, projected to occur across most of the US, coinciding with school and business reopening. The scenarios revealed that reaching higher vaccine coverage in July–December 2021 reduced the size and duration of the projected resurgence substantially, with the expected impacts was largely concentrated in a subset of states with lower vaccination coverage. Despite accurate projection of COVID-19 surges occurring and timing, the magnitude was substantially underestimated 2021 by the models compared with the of the reported cases, hospitalizations, and deaths occurring during July–December, highlighting the continued challenges to predict the evolving COVID-19 pandemic. Vaccination uptake remains critical to limiting transmission and disease, particularly in states with lower vaccination coverage. Higher vaccination goals at the onset of the surge of the new variant were estimated to avert over 1.5 million cases and 21,000 deaths, although may have had even greater impacts, considering the underestimated resurgence magnitude from the model. 
    more » « less
  5. Abstract Purpose

    There are growing signs that the COVID‐19 virus has started to spread to rural areas and can impact the rural health care system that is already stretched and lacks resources. To aid in the legislative decision process and proper channelizing of resources, we estimated and compared the county‐level change in prevalence rates of COVID‐19 by rural‐urban status over 3 weeks. Additionally, we identified hotspots based on estimated prevalence rates.

    Methods

    We used crowdsourced data on COVID‐19 and linked them to county‐level demographics, smoking rates, and chronic diseases. We fitted a Bayesian hierarchical spatiotemporal model using the Markov Chain Monte Carlo algorithm in R‐studio. We mapped the estimated prevalence rates using ArcGIS 10.8, and identified hotspots using Gettis‐Ord local statistics.

    Findings

    In the rural counties, the mean prevalence of COVID‐19 increased from 3.6 per 100,000 population to 43.6 per 100,000 within 3 weeks from April 3 to April 22, 2020. In the urban counties, the median prevalence of COVID‐19 increased from 10.1 per 100,000 population to 107.6 per 100,000 within the same period. The COVID‐19 adjusted prevalence rates in rural counties were substantially elevated in counties with higher black populations, smoking rates, and obesity rates. Counties with high rates of people aged 25‐49 years had increased COVID‐19 prevalence rates.

    Conclusions

    Our findings show a rapid spread of COVID‐19 across urban and rural areas in 21 days. Studies based on quality data are needed to explain further the role of social determinants of health on COVID‐19 prevalence.

     
    more » « less